서론

네트워크 시스템에서 처리율 제한 장치는 클라이언트 또는 서비스가 보내는 트래픽의 처리율(rate)을 제어하기 위한 장치다. HTTP를 예로 들면 이 장치는 특정 기간 내에 전송되는 클라이언트의 요청 횟수를 제한한다. API 요청 횟수가 제한 장치에 정의된 임계치(threshold)를 넘어서면 추가로 도달한 모든 호출은 처리가 중단(block)된다. 아래는 몇 가지 사례다.

  • 사용자는 초당 2회 이상 새 글을 올릴 수 없다.
  • 같은 IP 주소로는 하루에 10개 이상의 계정을 생성할 수 없다.
  • 같은 디바이스로는 주당 5회 이상 리워드(reward)를 요청할 수 없다.

이렇게 클라이언트의 요청 횟수를 제한하는 이유는 아래와 같다.

  • DoS 공격에 의한 자원 고갈을 방지한다. 예시를 들면, 트위터는 3시간 동안 300개의 트윗만 올릴 수 있도록 제한한다. 구글 독스 API는 사용자당 분당 300회의 read 요청만 허용한다. 
  • 비용을 절감한다. 추가 요청에 대한 처리를 제한하면 서버를 많이 두지 않아도 되고, 우선순위가 높은 API에 더 많은 자원을 할당할 수 있다. 아울러 처리율 제한은 제3자(third-party) API에 사용료를 지불하고 있는 회사들에게 매우 중요하다. 
  • 서버 과부하를 막는다. bot에서 오는 트래픽이나 사용자의 잘못된 이용 패턴으로 유발된 트래픽을 걸러내는데 처리율 제한 장치를 활용할 수 있다.

 

1단계 문제 이해 및 설계 범위 확정

처리율 제한 장치에는 여러가지 알고리즘이 있다. 각각의 장단점이 있으니 면접시에 소통하며 적절한 알고리즘을 설정해야 한다. 면접 시에 아래와 같이 의사소통을 나눌 수 있다.

 

면접자: 어떤 종류의 처리율 제한 장치를 설계해야 하나요? 클라이언트, 서버 중 어느측 제한 장치 입니까?

면접관: 서버측 API를 위한 장치를 설계한다고 가정합시다.

면접자: 어떤 기준을 사용해서 API 호출을 제어해야 하나요? IP주소를 사용해야 하나요? 아니면 사용자 ID? 아니면 다른 기준이 있습니까?

면접관: 다양한 형태의 제어 규칙을 정의할 수 있도록 하는 유연한 시스템 이어야 합니다.

면접자: 시스템 규모는 어느정도 인가요? 스타트업? 큰 기업인가요?

면접관: 시스템은 대규모 요청을 처리할 수 있어야 합니다.

면접자: 시스템이 분산 환경에서 동작해야 하나요?

면접관: 예

면접자: 처리율 제한 장치는 독립된 서비스인가요? 아니면 애플리케이션 코드에 포함될 수 있나요?

면접관: 그 결정은 본인이 해주시면 되겠습니다.

면접자: 사용자의 요청이 처리율 제한 장치에 의해 걸러진 경우 사용자에게 해당 사싱를 알려야 하나요?

면접관: 예

 

요구사항

  • 설정된 처리율을 초과하는 요청은 정확하게 제한한다.
  • 낮은 응답시간: 처리율 제한 장치는 HTTP 응답시간에 나쁜 영향을 주어서는 곤란하다. 
  • 가능한 한 적은 메모리를 써야 한다.
  • 분산형 처리율 제한 : 하나의 처리율 제한 장치를 여러 서버나 프로세스에서 공유할 수 있어야 한다.
  • 예외 처리 : 요청이 제한되었을 때는 그 사실을 사용자에게 분명하게 보여주어야 한다.
  • 높은 결함 감내성 : 제한 장치에 장애가 생기더라도 전체 시스템에 영향을 주어서는 안된다 

면접관과 의사소통을 토대로 위와 같은 요구사항을 정의할 수 있다.

 

2단계 개략적 설계안 제시 및 동의 구하기

 

처리율 제한 장치는 어디에 둘 것인가?

처리율 제한 장치의 위치는 클라이언트, 서버 모두 가능하다. 하지만, 클라이언트 측은 일반적으로 처리율을 제한하는 안정적인 장소가 되지 못한다. 클라이언트 요청은 쉽게 위변조가 가능하기 때문이다. 또한, 모든 클라이언트의 구현을 통제하는 것도 어려울 수 있다. 그렇기 때문에 서버 측에 두는 것이 바람직하다. 

그림 4-1

그림 4-1은 서버 측에 제한 장치를 두는 한 가지 방법이다.

그림 4-2

그림 4-2은 처리율 제한 장치를 API 서버에 두는 대신, 처리율 제한 미들웨어를 만들어 해당 미들웨어로 하여금 API 서버로 가는 요청을 통제하도록 하는 것이다. API 서버의 처리율이 초당 2개로 제한된 상황에서 3개이상 보낸 경우 그림 4-2와 같이 처리될 것이다. 

 

폭넓게 채택된 기술인 클라우드 마이크로서비스 인경우, 처리율 제한 장치는 API 게이트웨이라 불리는 컴포넌트에 구현된다. API 게이트웨이는 처리율 제한, SSL 종단, 사용자 인증, IP 허용 목록 관리 등을 지원하는 완전 위탁관리형 서비스로 클라우드 업체가 유지 보수를 담당하는 서비스다. 

 

그렇다면, 게이트웨이에 처리율 제한 장치를 두는 것이 정답일까? 아니다. 회사 별 기술 스택이나 엔지니어링 인력, 우선순위, 목표에 따라 달라질 수 있기 때문이다. 다만 일반적으로 적용될 수 있는 몇 가지 지침을 나열해 보면 아래와 같다.

  • 프로그래밍 언어, 캐시 서비스 등 현재 사용하고 있는 기술 스택을 점검하라. 현재 사용하는 프로그래밍 언어가 서버 측 구현을 지원하기 충분할 정도로 효율이 높은지 확인하라.
  • 사업 필요에 맞는 처리율 제한 알고리즘을 찾아라. 서버 측에서 모든 것을 구현하기로 했다면, 알고리즘은 자유롭게 선택할 수 있다. 하지만 제3 사업자가 제공하는 게이트웨이를 사용하기로 했다면 선택지는 제한될 수 있다.
  • 여러분의 설계가 마이크로서비스에 기반하고 있고, 사용자 인증이나 IP 허용목록 관리 등을 처리하기 위해 API 게이트웨이를 이미 설계에 포함시켰다면 처리율 제한 기능 또한 게이트웨이에 포함시켜야 할 수도 있다.
  • 처리율 제한 서비스를 직접 만드는 데는 시간이 든다. 처리율 제한 장치를 구현하기에 충분한 인력이 없다면 상용 API 게이트웨이를 쓰는 것이 바람직한 방법일 것이다.

 

처리율 제한 알고리즘

처리율 제한 알고리즘을 이후에 배우고 싶고, 면접에 대한 단계만 궁금하다면 아래 3단계로 넘어가길 바란다. (저도 정리하고 이후 필요시에 볼 예정입니다.)

 

이전에 말했 듯, 처리율 제한 알고리즘은 여러가지가 있고 각각 고유의 장단점이 존재한다. 종류 별로는 아래와 같다.

  • 토큰 버킷
  • 누출 버킷
  • 고정 윈도 카운터
  • 이동 윈도 로그
  • 이동 윈도 카운터

각각의 알고리즘의 장단점을 배워보자.

 

토큰 버킷 알고리즘

토큰 버킷은 지정된 용량을 갖는 컨테이너이다. 해당 버킷에는 사전 설정된 양의 토큰이 주기적으로 채워진다. 토큰이 꽉 찬 버킷에는 더 이상의 토큰은 추가되지 않는다. AWS와 스트라이프가 API 요청을 통제하기 위해 이 알고리즘을 사용한다.

 

토큰 버킷 알고리즘은 2개의 인자를 사용한다.

  • 버킷 크기 : 버킷에 담을 수 있는 토큰의 최대 개수
  • 토큰 공급률 : 초당 몇 개의 토큰이 버킷에 공급되는가?

그림 4-3

그림 4-3은 용량이 4인 버킷의 예시이다. 이미 꽉 차 있는데, 토큰이 온다면 유입된 토큰을 버리는 방식이다. 각 요청은 처리될 때마다 하나의 토큰을 사용한다. 요청이 도착하면 버킷에 충분한 토큰이 있는지 검사한다.

 

그렇다면, 버킷은 몇 개나 사용해야 할까? 이는 공급 제한 규칙에 따라 달라진다. 아래 사례를 살펴보자.

  • 통상적으로, API 엔드포인트마다 별도의 버킷을 둔다. 예를 들어, 사용자마다 하루에 한 번만 포스팅 할 수 있고, 친구는 150명까지 추가할 수 있고, 좋아요 버튼은 5번 까지만 누를 수 있다면, 사용자마다 3개의 버킷을 두어야 할 것이다 
  • IP 주소별로 처리율 제한을 적용해야 한다면, IP 주소마다 버킷을 하나씩 할당해야 한다.
  • 시스템의 처리율을 초당 10,000개 요청으로 제한하고 싶다면, 모든 요청이 하나의 버킷을 공유하도록 해야할 것이다.

토큰 버킷 알고리즘의 장단점으로는 아래와 같다.

  • 장점
    • 구현이 쉽다.
    • 메모리 사용 측면에서 효율적이다.
    • 짧은 시간에 집중되는 트래픽도 처리 가능하다. 남은 토큰이 있기만 하면 요청은 시스템에 전달될 것이다.
  • 단점
    • 버킷 크기와 토큰 공급률이라는 두 개의 인자를 가지고 있는데, 이 값을 적절하게 튜닝하는 것은 까다로운 일이다. (구현이 어렵다는 말 아닌가..?)

 

누출 버킷 알고리즘

토큰 버킷 알고리즘과 비슷하지만 요청 처리율이 고정되어 있다는 점이 다르다. 누출 버킷 알고리즘은 보통 FIFO로 구현한다. 

 

전자상거래 기업인 쇼피파이가 이 알고리즘으로 처리율 제한을 구현한다. 동작 원리는 아래와 같다.

  • 요청이 도착하면 큐가 가득 차 있는지 본다.
    • 빈자리가 있는 경우에는 큐에 요청을 추가한다.
    • 가득 차 있다면 새 요청을 버린다.
  • 지정된 시간마다 큐에서 요청을 꺼내어 처리한다.

그림 4-4

그림 4-4는 누출 버킷 알고리즘을 도식화한 것이다. 누출 버킷 알고리즘은 토큰 버킷과 같이 아래 2개의 인자를 사용한다.

  • 버킷 크기 : 큐 사이즈와 같은 값이다.
  • 처리율 : 저징된 시간당 몇 개의 항목을 처리할지 지정하는 값이다. 보통 초 단위로 표현한다.

장단점으로는 아래와 같다.

  • 장점
    • 큐의 크기가 제한되어 있어 메모리 사용량 측면에서 효율적이다.
    • 고정된 처리율을 가지고 있기 때문에 안정적 출력이 필요한 경우에 적합하다.
  • 단점
    • 단시간에 많은 트래픽이 몰리는 경우 큐에는 오래된 요청들이 쌓이게 되고, 그 요청들을 제때 처리 못하면 최신 요청들은 버려지게 된다.
    • 두 개 인자를 가지고 있는데, 이들을 올바르게 튜닝하기가 까다로울 수 있다.

 

고정 윈도 카운터 알고리즘

 

고정 윈도 카운터 알고리즘은 아래와 같이 동작한다.

  • 타임라인(timeline)을 고정된 간격의 윈도(window)로 나누고, 각 윈도마다 카운터를 붙인다.
  • 요청이 접수될 때마다 이 카운터의 값은 1씩 증가한다.
  • 이 카운터의 값이 사전에 설정된 임계치(threshold)에 도달하면 새로운 요청은 새 윈도가 열릴 때까지 버려진다.

그림 4-5

그림 4-5에서 시간 단위는 1초이다. 시스템은 초당 3개까지의 요청만을 허용하고, 매초마다 열리는 윈도에 3개 이상의 요청이 밀려오면 초과분은 그림 4-5에 보인대로 버려진다. 

 

이 알고리즘의 가장 큰 문제는 윈도의 경계 부근에 순간적으로 많은 트래픽이 집중될 경우 윈도에 할당된 양보다 더 많은 요청이 처리될 수 있다는 것이다. 아래 그림 4-6을 살펴보자.

그림 4-6

그림 4-6은 분당 최대 5개의 요청만을 허용하는 시스템이다. 카운터는 매 분마다 초기화 된다. 위를 보면 2:00:00와 2:01:00 사이에 5개의 요청이 들어왔고, 2:01:00과 2:02:00 사이에 또 5개의 요청이 들어왔다. 윈도 위치를 조금 옮겨 2:00:30부터 2:01:30까지의 1분 동안을 보면, 1분동안 처리한 요청은 10개이다. 허용 한도의 2배가 되는 것이다. 

 

장단점으로는 아래와 같다.

장점

  • 메모리 효율이 좋다.
  • 이해하기 쉽다.
  • 윈도가 닫히는 시점에 카운터를 초기화하는 방식은 특정한 트래픽 패턴을 처리하기에 적합하다.

단점

  • 윈도 경계 부근에서 일시적으로 많은 트래픽이 몰려드는 경우, 기대했던 시스템의 처리 한도보다 많은 양의 요청을 처리하게 된다.

 

이동 윈도 로깅 알고리즘

앞서 살펴본 고정 윈도 카운터 알고리즘에서의 단점을 해결하는 알고리즘이다.

동작 원리는 아래와 같다.

  • 요청의 타임스탬프(timestamp)를 추적한다. 타임스탬프 데이터는 보통 레디스(Redis)의 정렬 집합(sorted set) 같은 캐시에 보관한다.
  • 새 요청이 오면 만료된 타임스탬프는 제거한다. 만료된 타임스탬프는 그 값이 현재 윈도의 시작 시점보다 오래된 타임스탬프를 말한다.
  • 새 요청의 타임스탬프를 로그(log)에 추가한다.
  • 로그의 크기가 허용치보다 같거나 작으면 요청을 시스템에 전달한다. 그렇지 않은 경우에는 처리를 거부한다.

그림 4-7

그림 4-7를 살펴보자.

  • 요청시간이 1:00:01에 도착했을 때, 로그는 비어있는 상태이므로 요청이 시스템에 전달된다.
  • 요청시간이 1:00:30에 도착했을 때, 타임스탬프가 로그에 추가된다. 직후 크기는 2이며, 허용 한도보다 크지 않기 때문에 요청이 시스템에 전달된다.
  • 요청 시간이 1:00:50에 도착했을 때, 타임스탬프가 로그에 추가된다. 직후 크기는 3이며, 허용 한도보다 크기 때문에 요청이 시스템에 전달되지 않는다.
  • 요청 시간이 1:01:40에 도착했을 때, 타임스탬프가 로그에 추가된다. [1:00:01, 1:00:30]은 1분이 지났기 때문에 만료되었기 때문에 삭제한다. 삭제 직후 로그의 크기는 2이며, 허용 한도보다 크지 않기 때문에 요청이 시스템에 전달된다.

장단점을 살펴보자.

장점

  • 알고리즘이 구현하는 처리율 제한 메커니즘이 매우 정교하다. 

단점

  • 알고리즘이 다량의 메모리를 사용한다. 거부된 요청의 타임스탬프도 보관되기 때문이다.

 

이동 윈도 카운터 알고리즘

고정 윈도 카운터 알고리즘과 이동 윈도 로깅 알고리즘을 결합한 알고리즘

해당 알고리즘을 구현하는데는 2가지 접근법이 사용될 수 있는데, 책에는 1가지만 설명하고 다른 하나는 참고문헌을 언급한다. 

그림 4-8

그림 4-8은 분당 7개 요청으로 설정되어 있다. 이전 1분 동안 5개의 요청이, 그리고 이후 1분동안 3개의 요청이 왔다고 가정되어 있다. 현재 1분의 30% 시점에 도착한 새 요청의 경우, 현재 윈도에 몇 개의 요청이 온 것으로 보고 처리해야 할까? 아래와 같이 계산한다.

  • 현재 1분간의 요청 수 + 직전 1분간의 요청 수 * 이동 윈도와 직전 1분이 겹치는 비율
  • 위의 공식대로 하면, 현재 윈도에 들어있는 요청은 3+5*70%=6.5개다. 반올림, 반내림하여 쓸 수 있는데, 본 예제에서는 내림하여 쓴다고 한다. 따라서 값은 6이다.

현재 1분의 30% 시점에 도착한 신규 요청은 시스템으로 전달될 것이다. 하지만 그 직후에는 한도에 도달하였으므로 더 이상의 요청은 받을 수 없다.

 

장단점을 살펴보자.

장점

  • 이전 시간대의 평균 처리율에 따라 현재 윈도의 상태를 계산하므로 짧은 시간에 몰리는 트래픽에도 대응 가능하다.
  • 메모리 효율이 좋다.

단점

  • 직전 시간대에 도착한 요청이 균등하게 분포되어 있다고 가정한 상태에서 추정치를 계산하기 때문에 다소 느슨하다. 하지만, 이 문제는 크게 심각하지는 않다. 클라우드플레어가 실시했던 실험에 따르면 40억 개의 요청 가운데 시스템의 실제 상태와 맞지 않게 허용되거나 버려진 요청은 0.003%에 불과했기 때문이다.

 

개략적인 아키텍처

처리율 제한 알고리즘의 기본 아이디어는 단순하다. 얼마나 많은 요청이 접수되었는지를 추적할 수 있는 카운터를 추적 대상별로 두고(사용자? IP?, API 엔드포인트? 서비스 단위?), 이 카운터의 값이 어떤 한도를 넘어서면 한도를 넘어 도착한 요청은 거부하는 것이다.

 

그렇다면, 이 카운터응 어디에 보관하는 것이 적당할까? 데이터베이스는 디스크 접근 때문에 느려 사용하면 안 된다. 메모리상에서 동작하는 캐시가 바람직한데, 빠른데다 시간에 기반한 만료 정책을 지원하기 때문이다. 일례로 레디스는 처리율 제한 장치를 구현할 때 자주 사용되는 메모리 기반 저장장치로서, INCR과 EXPIRE의 두 가지 명령어를 지원한다.

  • INCR : 메모리에 저장된 카운터의 값을 1만큼 증가시킨다.
  • EXPIRE : 카운터에 타움아웃 값을 설정한다. 설정된 시간이 지나면 카운터는 자동으로 삭제된다.

그림 4-9

그림 4-9는 처리율 제한 장치의 개략적인 구조이다.

 

3단계 상세 설계

그림 4-9의 개략적 설계를 봐서는 아래와 같은 사항은 알 수가 없다.

  • 처리율 제한 규칙은 어떻게 만들어지고 어디에 저장되는가?
  • 처리가 제한된 요청들은 어떻게 처리되는가?

해당 절에서는 처리율 제한 규칙에 관한 질문부터 답한 후, 처리가 제한된 요청의 처리 전략을 살펴본다. 그리고 마지막으로 분산 환경에서의 처리율 제한 기법에 대해서도 살펴보고, 구체적인 설계와 성능 최적화 방안, 모니터링 방안까지 살펴볼 것이다.

 

처리율 제한 규칙

리프트(Lyft)는 처리율 제한에 오픈 소스를 사용하고 있다. 이 컴포넌트를 들여다보고, 어떤 처리율 제한 규칙이 사용되고 있는지 살펴보자.

domain : messaging
descriptors :
	- key : message_type
	  value : marketing
	  rate_limit :
	  	unit : day
	  	requests_per_unit: 5

위의 예제는 시스템이 처리할 수 있는 마케팅 메시지의 최대치를 하루 5개로 제한하고 있다. 아래는 또 다른 규칙의 사례다.

domain : auth
descriptors :
	- key : auth_type
	  value : login
	  rate_limit :
	  	unit : minute
	  	requests_per_unit: 5

위 규칙은 클라이언트가 분당 5회 이상 로그인 할 수 없도록 제한하고 있다. 이런 규칙들은 보통 설정 파일(configuration file) 형태로 디스크에 저장된다.

 

처리율 한도 초과 트래픽의 처리

어떤 요청이 한도 제한이 걸리면 API는 HTTP 429 Status Code(too many requests)를 클라이언트에게 보낸다. 경우에 따라서는 한도 제한에 걸린 메시지를 나중에 처리하기 위해 큐에 보관할 수도 있다. 예를 들어, 어떤 주문이 시스템 과부하때문에 한도 제한에 걸렸다고 해보자. 해당 주문들은 보관했다가 나중에 처리할 수도 있을 것이다.

 

처리율 제한 장치가 사용하는 HTTP Header

클라이언트는 자기 요청이 처리율 제한에 걸리고 있는지를(throttle) 어떻게 감지할 수 있을까? 자기 요청이 처리율 제한에 걸리기까지 얼마나 많은 요청을 보낼 수 있는지 어떻게 알 수 있을까? 답은 HTTP 응답 헤더에 있다. 

  • X-Ratelimit-Remaining : 윈도 내에 남은 처리 가능 요청의 수
  • X-Ratelimit-Limit : 매 윈도마다 클라이언트가 전송할 수 있는 요청의 수
  • X-Ratelimit-Retry-After : 한도 제한에 걸리지 않으려면 몇 초 뒤에 요청을 다시 보내야 하는지 알림

사용자가 너무 많은 요청을 보내면 429 too many requests 오류를 X-Ratelimit-It-Retry-After 헤더와 함께 반환하도록 한다.

 

상세 설계

4-10

그림 4-10은 상세한 설계 도면이다.

  • 처리율 제한 규칙은 디스크에 보관한다. 작업 프로세스(workers)는 수시로 규칙을 디스크에서 읽어 캐시에 저장한다.
  • 클라이언트가 요청을 서버에 보내면 요청은 먼저 처리율 제한 미들웨어에 도달한다.
  • 처리율 제한 미들웨어는 제한 규칙을 캐시에서 가져온다. 아울러 카운터 및 마지막 요청의 타임스탬프를 레디스 캐시에서 가져온다. 가져온 값들에 근거하여 해당 미들웨어는 API 서버로 클라이언트의 요청을 보낼지, 클라이언트에게 429 응답할지 선택한다.

 

분산 환경에서의 처리율 제한 장치의 구현

단일 서버를 지원하는 처리율 제한 장치를 구현하는 것은 어렵지 않다. 하지만 여러 대의 서버와 병렬 스레드를 지원하도록 시스템을 확장하는 것은 또 다른 문제다. 아래 2가지 어려운 문제를 풀어야 한다.

  • 경쟁 조건 (race condition)
  • 동기화 (synchronization)

경쟁조건

처리율 제한 장치는 대략적으로 아래와 같이 동작한다.

  1. 레디스에서 카운터의 값을 읽는다.
  2. counter+1의 값이 임계치를 넘는지 본다.
  3. 넘지 않는다면 레디스에 보관된 카운터 값을 1만큼 증가시킨다.

하지만, 병행성이 심한 환경에서는 그림 4-11 같은 경쟁 조건 이슈가 발생할 수 있다.

그림 4-11

레디스에 저장된 counter의 값을 비슷한 시간대에 2개의 스레드에서 병렬적으로 counter의 값을 읽고 처리할 때 문제가 발생할 수 있다. 이때, 가장 널리 알려진 해결책은 락(lock)이다. 하지만, 락은 시스템의 성능을 상당히 떨어뜨린다는 문제가 있다. 위 설계의 경우에는 lock대신 쓸 수 있는 해결책이 2가지 있다.

  1. 루아 스크립트(Lua Script)
  2. 정렬 집합(sorted set)이라 불리는 Redis 자료구조 사용

두 전략에 대해 궁금하다면 링크를 통해 공부하자. 링크1, 링크2 

 

동기화 이슈

동기화는 분산 환경에서 고려해야 할 중요한 요소이다. 수백만 사용자를 지원하려면 한 대의 처리율 제한 장치 서버로는 충분하지 않을 수 있다. 그렇기때문에 처리율 제한 장치 서버를 여러 대 두게 되면 동기화가 필요해진다.

그림 4-12

예를들어, 그림 4-12의 왼쪽 그림의 경우 클라이언트 1은 제한 장치 1에 요청을 보내고 클라이언트 2는 제한 자치 2에 요청을 보내고 있다. 웹 계층은 무상태(stateless)이므로 클라이언트는 그림 4-12의 오른쪽 그림처럼 각기 다른 제한 장치로 보내질 수 있다. 이때 동기화를 하지 않는다면 제한 장치 1은 클라이언트 2에 대해서는 아무것도 모르므로 처리율 제한을 올바르게 수행할 수 없을 것이다. 

 

이에 대한 1가지 해결책은 고정 세션(sticky session)을 활용하여 같은 클라이언트로부터의 요청은 항상 같은 처리율 제한 장치로 보낼 수 있도록 하는 것이다. 하지만 이 방법은 추천하고 싶지 않은데, 규모면에서 확장 가능하지도 않고 유연하지도 않기 때문이다. 

그림 4-13

더 나은 해결책으로는 그림 4-13 같이 레디스와 같은 중앙 집중형 데이터 저장소를 쓰는 것이다. 

 

성능 최적화

지금까지 살펴본 설계는 2가지 지점에서 개선이 가능하다.

 

우선, 여러 데이터센터를 지원하는 문제는 처리율 제한 장치에 매우 중요한 문제라는 것을 상기하자. 데이터센터에서 멀리 떨어진 사용자를 지원하려다보면 지연시간(latency)이 증가할 수 밖에 없기 때문이다. 대부분의 클라우드 서비스 사업자는 세계 곳곳에 에지 서버(edge server)를 심어놓고 있다. 사용자의 트래픽을 가장 가까운 에지 서버로 전달하여 지연시간을 줄인다.

 

2번째로, 제한 장치 간에 데이터를 동기화할 때 최종 일관성 모델(eventual consistency model)을 사용하는 것이다. 이 일관성 모델이 생소하다면, 이후 6장 "키-값 저장소 설계"의 "데이터 일관성" 항목을 참고하도록 하자. (나도 생소하기 때문에 이후에 확인해봐야겠다.)

 

모니터링

처리율 제한 장치를 설치한 이후에는 효과적으로 동작하고 있는지 보기 위해 데이터를 모을 필요가 있다. 기본적으로 모니터링을 통해 확인하려는 것은 아래 2가지이다.

  • 채택된 처리율 제한 알고리즘이 효과적이다.
  • 정의한 처리율 제한 규칙이 효과적이다.

예를들어, 처리율 제한 규칙이 너무 빡빡하게 설정되었다면 많은 유효 요청이 처리되지 못하고 버려질 것이다. 이러한 현상이 일어난다면 규칙을 완화할 필요가 있다. 또한, 깜짝 세일 같은 이벤트 때문에 트래픽이 급증할 때 처리율 제한 장치가 비효율적으로 동작한다면, 특정 트래픽 패턴을 잘 처리할 수 있도록 알고리즘을 바꾸는 것을 고려해봐야 한다. 이러한 상황에서는 토큰 버킷이 적합할 것이다.

 

이처럼 모니터링을 통해 서비스의 질을 향상시킬 수 있다.

 

 

4단계 마무리

살펴본 처리율 제한 알고리즘은 아래와 같다.

  • 토큰 버킷
  • 누출 버킷
  • 고정 윈도 카운터
  • 이동 윈도 로그
  • 이동 윈도 카운터

알고리즘 이외에도 아키텍처, 분산환경에서의 처리율 제한 장치, 성능 최적화, 모니터링 등을 살펴보았다. 시간이 허락된다면 아래와 같은 부분을 언급해보면 도움이 될 것이다.

  • 경성(hard) 또는 연성(soft) 처리율 제한
    • 경성 처리율 제한 : 요청 개수는 임계치를 절대 넘어설 수 없다.
    • 연성 처리율 제한 : 요청 개수는 잠시 동안은 임계치를 넘어설 수 있다.
  • 다양한 계층에서의 처리율 제한
    • 이번 장에서는 애플리케이션 계층에서의 처리율 제한에 대해서만 살펴보았다. 하지만, 다른 계층에서도 처리율 제한이 가능하다. 예를들어, Iptables를 사용하면 IP 주소(3계층)에 처리율 제한을 적용하는 것이 가능하다. 
  • 처리율 제한을 회피하는 방법. 클라이언트를 어떻게 설계하는 것이 최선인가?
    • 클라이언트 측 캐시를 사용하여 API 호출 횟수를 줄인다.
    • 처리율 제한의 임계치를 이해하고, 짧은 시간 동안 너무 많은 메시지를 보내지 않도록 한다.
    • 예외나 에러를 처리하는 코드를 도입하여 클라이언트가 예외적으로 상황으로부터 우아하게 복구될 수 있도록 한다.
    • 재시도(retry) 로직을 구현할 때는 충분한 백오프(back-off) 시간을 둔다.

 

 

 

Reference

  • 가상 면접 사례로 배우는 대규모 시스템 설계 기초

+ Recent posts